Name : ______

Score :

(Integers)

L1S2

Simplify.

12)
$$10 \times (-3) =$$

Name:

Converting Fractions to Decimals)

A) Convert the following fractions to decimals.

1)
$$\frac{13}{100} =$$

2)
$$\frac{4}{10} =$$

3)
$$\frac{6}{10} =$$

3)
$$\frac{6}{10} =$$
 4) $\frac{90}{100} =$

5)
$$\frac{68}{100} =$$

6)
$$\frac{32}{10} =$$

7)
$$\frac{49}{10} =$$

8)
$$\frac{7}{100} = \frac{1}{100}$$

Match each fraction with its equivalent decimal.

1)
$$\frac{1}{100}$$

2)
$$\frac{22}{10}$$

3)
$$\frac{10}{100}$$

C) Which of the following is equivalent to $\frac{5}{10}$?

Properties of Exponents

NAME	SUMMARY	PROPERTY	EXAMPLE
Product of Powers	When multiplying powers with the same base, add the exponents.	$x^n \cdot x^m = x^{n+m}$	$5^3 \cdot 5^4 = 5^7$
Quotient of Powers	When dividing powers with the same base, subtract the exponents.	$\frac{X^n}{X^m} = X^{n-m}$	$\frac{2^8}{2^2} = 2^6$
Power of a Power	To find a power of a power, multiply the exponents.	$(x^n)^m = x^{n \cdot m}$	$(3^5)^2 = 3^{10}$
Power of a Product	To find the power of a product, multiply the powers of the individual factors.	$(x \cdot y)^n = x^n \cdot y^n$	$(6 \cdot 2)^4 = 6^4 \cdot 2^4$
Power of a Quotient	To find the power of a quotient, divide the powers of the numerator and denominator.	$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$	$\left(\frac{5}{9}\right)^3 = \frac{5^3}{9^3}$
Zero Exponent	Any nonzero base raised to the zero power equals 1.	x° = 1	8° = 1
Negative Exponent	If the base has a negative exponent, rewrite the expression as a fraction with 1 in the numerator and a positive exponent in the denominator.	$x^{-n} = \frac{1}{x^n}$	$4^{-3} = \frac{1}{4^3}$

Name _____

Date _____

Properties of Exponents Practice

Simplify each expression using the properties of exponents. Write the answer as a single term with a positive exponent.

Challenge! Simplify each expression using the properties of exponents. Write the answer as a single term with a positive exponent.

$$\frac{9^{1}}{9^{4}} = \frac{25^{5}}{25^{3}} \cdot 25^{6} = \frac{(7^{3})^{4}}{7^{5}} = \frac{(4^{-3})^{2}}{5^{8}} \cdot (5^{5})^{2} = \frac{6^{12} \cdot 6^{15}}{6^{4}} = \frac{6^{12} \cdot 6^{15}}{6^{15}} = \frac{6^{12} \cdot 6^{15$$