In a multiplication problem, the numbers multiplied together are called <u>**factors**</u>. The answer to a multiplication problem is called the <u>**product**</u>.

In the multiplication problem $5 \times 4 = 20$, 5 and 4 are <u>factors</u> and 20 is the <u>product</u>.

If we reverse the problem, $20 = 5 \times 4$, we say we have **<u>factored</u>** 20 into 5×4 .

In this worksheet we will **factor** polynomials.

In the multiplication problem $2x(x + 4) = 2x^2 + 8x$, 2x and x + 4 are the **factors** and $2x^2 + 8x$ is the **product**.

If we reverse the problem, $2x^2 + 8x = 2x(x + 4)$, we say we have **factored** $2x^2 + 8x$ into 2x and x + 4.

Name the factors and the product in each problem.

1.	5(x-7) = 5x - 35	factors:	product:
2.	$3x(x+9) = 3x^2 + 27x$	factors:	product:
3.	$-10x(x-6) = -10x^2 + 60x$	factors:	product:
4.	$4xy^2(3x+8y) = 12x^2y^2 + 32xy^3$	factors:	product:

The first step in factoring polynomials is to <u>factor out</u> the **greatest common factor (GCF)**. This is the <u>largest integer</u> and <u>highest degree of each variable</u> that will divide evenly into each term of the polynomial.

Factoring is the reverse of multiplying!

• In the polynomial 5x - 35, 5 is the largest integer that will divide 5x and 35, and we cannot factor out any variable because the second term, 35, does not have a variable part.

To factor 5x - 35 we write: 5x - 35 = 5(x - 7).

• In the polynomial $3x^2 + 27x$, 3 is the largest integer that will divide $3x^2$ and 27x. We can factor out x because each term has at least one factor of x (look for the term with the lowest degree of each variable).

To factor $3x^2 + 27x$ we write: $3x^2 + 27x = 3x(x+9)$.

• In the polynomial $12x^2y^2 + 32xy^3$, 4 is the largest integer that will divide $12x^2y^2$ and $32xy^3$. We can factor out x and y^2 because each term has at least one factor of x and two factors of y.

To factor $12x^2y^2 + 32xy^3$ we write: $12x^2y^2 + 32xy^3 = 4xy^2(3x + 8y)$.

Find the largest integer that	will divide all the terms	<u>.</u>		
5. 9 <i>x</i> and 45	6. $7x^2$ and $21x$	7. $18x^6$ and $12x^3$	8. $15x^3$, $25x^2$, and $55x$	
Find the largest degree of x that can be factored out of all the terms.				
9. 9 <i>x</i> and 45	10. $7x^2$ and $21x$	11. $18x^6$ and $12x^3$	12. $15x^3$, $25x^2$, and $55x$	
Factor the polynomials.				
13. $9x + 45 =$		14. $7x^2 - 21x =$		

To factor polynomials, find the greatest common factor (GCF) of the coefficients and factor it out-<u>divide</u> <u>each term by the GCF</u>. Then find the greatest common factor (GCF) of the variables by finding the lowest power of each variable that will divide all terms and factor it out-<u>divide each term by GCF</u>. Move the GCF to the outside and write in parenthesis what is remaining, after you factor out the GCF.

16. $15x^3 - 25x^2 + 55x =$

Factor each of the following polynomials.

15. $18x^6 + 12x^3 =$

17. $6x^2 - 24x$	18. $14x^2 - 35x$	19. $5x^2 + x$
20. $20x^2 + 44x$	21. $17x^2 + 51x$	22. $36x^3 + 63x^2 - 27x$
23. $3x^4y^2 + 15x^3y^3$	24. $20y^4 - 15y^3 + 30y^2$	25. $9x^7y^5 - 3x^2y^6$

If the leading coefficient is negative, always factor out the negative!

26. $-2m^4 + 14m^2 - 6m$ 27. $-5x^2y + 35xy$ 28. $-x^2 + 5x - 6$

In a multiplication problem, the numbers multiplied together are called **<u>factors</u>**. The answer to a multiplication problem is called the **<u>product</u>**.

In the multiplication problem $5 \times 4 = 20$, 5 and 4 are <u>factors</u> and 20 is the <u>product</u>.

If we reverse the problem, $20 = 5 \times 4$, we say we have **<u>factored</u>** 20 into 5×4 .

In this worksheet we will **factor** polynomials.

In the multiplication problem $2x(x + 4) = 2x^2 + 8x$, 2x and x + 4 are the **factors** and $2x^2 + 8x$ is the **product**.

If we reverse the problem, $2x^2 + 8x = 2x(x + 4)$, we say we have <u>factored</u> $2x^2 + 8x$ into 2x and x + 4.

Name the factors and the product in each problem.

1. $5(x-7) = 5x - 35$	5 , (x-7) factors:	5x-35 _ product:
2. $3x(x+9) = 3x^2 + 27x$	factors:3x, (x+9)	_ product: <u>3x^2+27x</u>
3. $-10x(x-6) = -10x^2 + 60x$	factors: $-10x$, (x-6)	_ product: <u>-10x^2+60x</u>
4. $4xy^2(3x+8y) = 12x^2y^2 + 32xy^3$	factors: $4xy^2$, $(3x+8y)$	_ product: <u>12x^2y^2+32xy</u> ^3

The first step in factoring polynomials is to <u>factor out</u> the **greatest common factor (GCF)**. This is the <u>largest integer</u> and <u>highest degree of each variable</u> that will divide evenly into each term of the polynomial.

Factoring is the reverse of multiplying!

• In the polynomial 5x - 35, 5 is the largest integer that will divide 5x and 35, and we cannot factor out any variable because the second term, 35, does not have a variable part.

To factor 5x - 35 we write: 5x - 35 = 5(x - 7).

• In the polynomial $3x^2 + 27x$, 3 is the largest integer that will divide $3x^2$ and 27x. We can factor out x because each term has at least one factor of x (look for the term with the lowest degree of each variable).

To factor $3x^2 + 27x$ we write: $3x^2 + 27x = 3x(x+9)$.

• In the polynomial $12x^2y^2 + 32xy^3$, 4 is the largest integer that will divide $12x^2y^2$ and $32xy^3$. We can factor out x and y^2 because each term has at least one factor of x and two factors of y.

To factor $12x^2y^2 + 32xy^3$ we write: $12x^2y^2 + 32xy^3 = 4xy^2(3x + 8y)$.

Find the largest integer the	at will divide all the terr	<u>ms.</u>	
5. 9 <i>x</i> and 45 09	 6. 7x² and 21x 7 	7. $18x^6$ and $12x^3$ 6	8. 15x ³ , 25x ² , and 55x 5
Find the largest degree of	x that can be factore	d out of all the terms.	
9. 9 <i>x</i> and 45 0	10. 7 <i>x</i> ² and 21 <i>x</i> x	11. $18x^6$ and $12x^3$ x^3	12. 15x ³ ,25x ² , and 55x x
Factor the polynomials.			
13. 9 <i>x</i> + 45= 9 (x+5)		14. $7x^2 - 21x = 7x(x-3)$	
15. $18x^6 + 12x^3 = 6x^3 (3x^3 + 3x^3)$	-2)	16. $15x^3 - 25x^2 + 55x =$ $5x(3x^2-5x+11)$	

To factor polynomials, find the greatest common factor (GCF) of the coefficients and factor it out-<u>divide</u> <u>each term by the GCF</u>. Then find the greatest common factor (GCF) of the variables by finding the lowest power of each variable that will divide all terms and factor it out-<u>divide each term by GCF</u>. Move the GCF to the outside and write in parenthesis what is remaining, after you factor out the GCF.

Factor each of the following polynomials.

17. $6x^2 - 24x$	18. $14x^2 - 35x$	19. $5x^2 + x$
6x(x-4)	7x(2x-5)	x(5x+1)

20. $20x^2 + 44x$	21. $17x^2 + 51x$	22. $36x^3 + 63x^2 - 27x$
4x(5x+11)	17x(x+3)	$9x(4x^2+7x-3)$

23. $3x^4y^2 + 15x^3y^3$	24. $20y^4 - 15y^3 + 30y^2$	25. $9x^7y^5 - 3x^2y^6$
3x^3y^2(x+5y)	5y^2(4y^2-3y+6)	3x^2y^5(3x^5-y)

If the leading coefficient is negative, always factor out the negative!

26. $-2m^4 + 14m^2 - 6m$	27. $-5x^2y + 35xy$	28. $-x^2 + 5x - 6$
-2m(m^3-7m+3)	-5xy(x-7)	-(x^2-5x+6)